Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Food Res Int ; 182: 114157, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519184

ABSTRACT

Intestinal fibrosis is a long-term complication of inflammatory bowel diseases (IBD). Changes in microbial populations have been linked with the onset of fibrosis and some food additives are known to promote intestinal inflammation facilitating fibrosis induction. In this study, we investigated how polysorbate 80, sucralose, titanium dioxide, sodium nitrite and maltodextrin affect the gut microbiota and the metabolic activity in healthy and IBD donors (patients in remission and with a flare of IBD). The Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) with a static (batch) configuration was used to evaluate the effects of food additives on the human intestinal microbiota. Polysorbate 80 and sucralose decreased butyrate-producing bacteria such as Roseburia and Faecalibacterium prausnitzii. Both compounds, also increased bacterial species positively correlated with intestinal inflammation and fibrosis (i.e.: Enterococcus, Veillonella and Mucispirillum schaedleri), especially in donors in remission of IBD. Additionally, polysorbate 80 induced a lower activity of the aryl hydrocarbon receptor (AhR) in the three groups of donors, which can affect the intestinal homeostasis. Maltodextrin, despite increasing short-chain fatty acids production, promoted the growth of Ruminococcus genus, correlated with higher risk of fibrosis, and decreased Oscillospira which is negatively associated with fibrosis. Our findings unveil crucial insights into the potential deleterious effects of polysorbate 80, sucralose and maltodextrin on human gut microbiota in healthy and, to a greater extent, in IBD patients.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Fermentation , Food Additives/adverse effects , Ecosystem , Polysorbates/adverse effects , Fibrosis , Inflammation
2.
Meat Sci ; 211: 109441, 2024 May.
Article in English | MEDLINE | ID: mdl-38301298

ABSTRACT

This study assessed the bioprotective effect of Carnobacterium maltaromaticum (CM) against Pseudomonas fluorescens (PF) and Brochothrix thermosphacta (BT) in ground beef and sliced cooked ham stored in high- and low-oxygen-modified atmospheres (66/4/30% O2/N2/CO2 and 70/30% N2/CO2, respectively). Both meat products were inoculated with CM, PF, and BT individually or in combination and stored for 7 days (3 days at 4 °C + 4 days at 8 °C) for ground beef and 28 days (10 days at 4 °C + 18 days at 8 °C) for sliced cooked ham. Each food matrix was assigned to 6 treatments: NC (no bacterial inoculation, representing the indigenous bacteria of meat), CM, BT, PF, CM + BT, and CM + PF. Bacterial growth, pH, instrumental color, and headspace gas composition were assessed during storage. CM counts remained stable from inoculation and throughout the shelf-life. CM reduced the population of inoculated and indigenous spoilage bacteria, including BT, PF, and enterobacteria, and showed a negligible impact on the physicochemical quality parameters of the products. Furthermore, upon simulating the shelf-life of ground beef and cooked ham, a remarkable extension could be observed with CM. Therefore, CM could be exploited as a biopreservative in meat products to enhance quality and shelf-life.


Subject(s)
Carnobacterium , Food Microbiology , Food Packaging , Animals , Cattle , Meat/microbiology , Bacteria , Colony Count, Microbial
3.
Foods ; 12(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37959138

ABSTRACT

A Staphyloccoccus aureus is one of the leading causes of food poisoning outbreaks (FPOs) worldwide. Staphylococcal food poisoning (SFP) is induced by the ingestion of food containing sufficient levels of staphylococcal enterotoxins (SEs). Currently, 33 SEs and SE-like toxins (SEls) have been described in the literature, but only five named "classical" enterotoxins are commonly investigated in FPOs due to lack of specific routine analytical techniques. The aims of this study were to (i) establish the genetic profile of strains in a variety of artisanal cheeses (n = 30) in Belgium, (ii) analyze the expression of the SE(l)s by these strains and (iii) compare the output derived from the different analytical tools. Forty-nine isolates of S. aureus were isolated from ten Belgian artisanal cheeses and were analyzed via microbiological, immunological, liquid chromatography mass spectrometry, molecular typing and genetic methods. The results indicated that classical SEs were not the dominant SEs in the Belgian artisanal cheeses that were analyzed in this study, and that all S. aureus isolates harbored at least one gene encoding a new SE(l). Among the new SE(l)s genes found, some of them code for enterotoxins with demonstrated emetic activity and ecg-enterotoxins. It is worth noting that the involvement of some of these new SEs has been demonstrated in SFP outbreaks. Thus, this study highlighted the importance of the development of specific techniques for the proper investigation of SFP outbreaks.

4.
Vet World ; 16(10): 2016-2028, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38023276

ABSTRACT

Background and Aim: Foodborne diseases caused by Escherichia coli are prevalent globally. Treatment is challenging due to antibiotic resistance in bacteria, except for foodborne infections due to Shiga toxin-producing E. coli, for which treatment is symptomatic. Several studies have been conducted in Africa on antibiotic resistance of E. coli isolated from several sources. The prevalence and distribution of resistant pathogenic E. coli isolated from food, human, and animal sources and environmental samples and their virulence gene profiles were systematically reviewed. Materials and Methods: Bibliographic searches were performed using four databases. Research articles published between 2000 and 2022 on antibiotic susceptibility and virulence gene profile of E. coli isolated from food and other sources were selected. Results: In total, 64 articles were selected from 14 African countries: 45% of the studies were conducted on food, 34% on animal samples, 21% on human disease surveillance, and 13% on environmental samples. According to these studies, E. coli is resistant to ~50 antimicrobial agents, multidrug-resistant, and can transmit at least 37 types of virulence genes. Polymerase chain reaction was used to characterize E. coli and determine virulence genes. Conclusion: A significant variation in epidemiological data was noticed within countries, authors, and sources (settings). These results can be used as an updated database for monitoring E. coli resistance in Africa. More studies using state-of-the-art equipment are needed to determine all resistance and virulence genes in pathogenic E. coli isolated in Africa.

5.
Microorganisms ; 11(10)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37894185

ABSTRACT

Clostridioides difficile is an anaerobic spore-forming Gram-positive bacterium. C. difficile carriage and 16S rDNA profiling were studied in three clinical groups at three different sampling times: inflammatory bowel disease (IBD) patients, C. difficile infection (CDI) patients and healthcare workers (HCWs). Diversity analysis was realized in the three clinical groups, the positive and negative C. difficile carriage groups and the three analysis periods. Concerning the three clinical groups, ß-diversity tests showed significant differences between them, especially between the HCW group and IBD group and between IBD patients and CDI patients. The Simpson index (evenness) showed a significant difference between two clinical groups (HCWs and IBD). Several genera were significantly different in the IBD patient group (Sutterella, Agathobacter) and in the CDI patient group (Enterococcus, Clostridioides). Concerning the positive and negative C. difficile carriage groups, ß-diversity tests showed significant differences. Shannon, Simpson and InvSimpson indexes showed significant differences between the two groups. Several genera had significantly different relative prevalences in the negative group (Agathobacter, Sutterella, Anaerostipes, Oscillospira) and the positive group (Enterococcus, Enterobacteriaceae_ge and Enterobacterales_ge). A microbiota footprint was detected in C. difficile-positive carriers. More experiments are needed to test this microbiota footprint to see its impact on C. difficile infection.

6.
Microorganisms ; 11(8)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37630613

ABSTRACT

In this study, we aimed to develop a comprehensive microbial source amplicon database tailored for source tracking in veterinary settings. We rigorously tested our locally curated source tracking database by selecting a frequently accessed environment by veterinary students and veterinarians. By exploring the composition of resident microbiota and identifying potential sources of contamination, including animals, the environment, and human beings, we aimed to provide valuable insights into the dynamics of microbial transmission within veterinary facilities. The 16S rDNA amplicon sequencing was used to determine the bacterial taxonomic profiles of restroom surfaces. Bacterial sources were identified by linking our metadata-enriched local database to the microbiota profiling analysis using high-quality sequences. Microbiota profiling shows the dominance of four phyla: Actinobacteria, Bacteroidetes, Proteobacteria, and Firmicutes. If the restroom cleaning process did not appear to impact microbiota composition, significant differences regarding bacterial distribution were observed between male and female users in different sampling campaigns. Combining 16S rDNA profiling to our specific sources labeling pipeline, we found aquatic and human sources were the primary environment keywords in our campaigns. The probable presence of known animal sources (bovids, insects, equids, suids…) associated with bacterial genera such as Chryseobacterium, Bergeyella, Fibrobacter, and Syntrophococcus was also involved in restroom surfaces, emphasizing the proximity between these restrooms and the exchange of bacteria between people involved in animals handling. To summarize, we have demonstrated that DNA sequence-based source tracking may be integrated with high-throughput bacterial community analysis to enrich microbial investigation of potential bacterial contamination sources, especially for little known or poorly identified taxa. However, more research is needed to determine the tool's utility in other applications.

7.
Int J Mol Sci ; 24(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37445758

ABSTRACT

Escherichia coli K1 is a leading cause of neonatal meningitis. The asymptomatic carriage of these strains in the maternal intestinal microbiota constitutes a risk of vertical transmission to the infant at birth. The aim of this work was to evaluate the efficacy of phage therapy against E. coli K1 in an intestinal environment and its impact on the intestinal microbiota. For this purpose, three independent experiments were conducted on the SHIME® system, the first one with only the phage vB_EcoP_K1_ULINTec4, the second experiment with only E. coli K1 and the last experiment with both E. coli K1 and the phage. Microbiota monitoring was performed using metagenetics, qPCR, SCFA analysis and the induction of AhR. The results showed that phage vB_EcoP_K1_ULINTec4, inoculated alone, was progressively cleared by the system and replicates in the presence of its host. E. coli K1 persisted in the microbiota but decreased in the presence of the phage. The impact on the microbiota was revealed to be donor dependent, and the bacterial populations were not dramatically affected by vB_K1_ULINTec4, either alone or with its host. In conclusion, these experiments showed that the phage was able to infect the E. coli K1 in the system but did not completely eliminate the bacterial load.


Subject(s)
Bacteriophages , Escherichia coli Infections , Gastrointestinal Microbiome , Meningitis , Podoviridae , Infant , Infant, Newborn , Pregnancy , Female , Humans , Escherichia coli , Escherichia coli Infections/microbiology , Meningitis/etiology
8.
Heliyon ; 9(6): e17135, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37408897

ABSTRACT

Food of animal origin is an important source of proteins for human beings. However, they are subject to microbial contamination. It is essential to ensure the safety of food products intended for school children regarding their vulnerability to food poisoning. Good sanitary quality of these products requires the respect of good practices during their processing and distribution. This study aims to evaluate the conditions of processing and sale of food of animal origin to school children in public schools, with or without canteens, in the Department of Mono in southern Benin. In the Department of Mono in the Republic of Benin, 137 operators were interviewed in public schools, with one operator per school, using a questionnaire created on the Epicollect5 platform. The interview showed that the operators involved in the processing and sale of food to school children were women. Most of these operators had primary education and did not undergo a medical examination. They transported food of animal origin mixed with other types of food. Frying and cooking were used to prepare or process the food. Direct observation revealed that food is produced in an unhealthy environment. The operators did not wear gloves during food processing but some wore aprons. All the operators washed their hands with soap and water (tap or well water) after using the toilet. There was not an adequate handwashing facility. The majority of operators used wooden cutting boards. Overall, food operators especially in schools without a canteen do not follow good hygiene and manufacturing practices in the kitchen. To guarantee food safety for school children, training should be organized to make operators aware of good hygiene and manufacturing practices in kitchens.

9.
Viruses ; 15(5)2023 04 25.
Article in English | MEDLINE | ID: mdl-37243139

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) causing post-weaning diarrhea (PWD) in piglets have a detrimental impact on animal health and economy in pig production. ETEC strains can adhere to the host's small intestinal epithelial cells using fimbriae such as F4 and F18. Phage therapy could represent an interesting alternative to antimicrobial resistance against ETEC infections. In this study, four bacteriophages, named vB_EcoS_ULIM2, vB_EcoM_ULIM3, vB_EcoM_ULIM8 and vB_EcoM_ULIM9, were isolated against an O8:F18 E. coli strain (A-I-210) and selected based on their host range. These phages were characterized in vitro, showing a lytic activity over a pH (4-10) and temperature (25-45 °C) range. According to genomic analysis, these bacteriophages belong to the Caudoviricetes class. No gene related to lysogeny was identified. The in vivo Galleria mellonella larvae model suggested the therapeutic potential of one selected phage, vB_EcoS_ULIM2, with a statistically significant increase in survival compared to non-treated larvae. To assess the effect of this phage on the piglet gut microbiota, vB_EcoS_ULIM2 was inoculated in a static model simulating the piglet intestinal microbial ecosystem for 72 h. This study shows that this phage replicates efficiently both in vitro and in vivo in a Galleria mellonella model and reveals the safety of the phage-based treatment on the piglet microbiota.


Subject(s)
Bacteriophages , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Gastrointestinal Microbiome , Swine Diseases , Animals , Swine , Enterotoxigenic Escherichia coli/genetics , Ecosystem , Escherichia coli Infections/therapy , Escherichia coli Infections/veterinary
10.
Antioxidants (Basel) ; 12(4)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37107193

ABSTRACT

Clostridioides difficile infection (CDI) appears to be associated with different liver diseases. C. difficile secretes membrane vesicles (MVs), which may be involved in the development of nonalcoholic fatty liver disease (NALFD) and drug-induced liver injury (DILI). In this study, we investigated the presence of C. difficile-derived MVs in patients with and without CDI, and analyzed their effects on pathways related to NAFLD and DILI in HepG2 cells. Fecal extracellular vesicles from CDI patients showed an increase of Clostridioides MVs. C. difficile-derived MVs that were internalized by HepG2 cells. Toxigenic C. difficile-derived MVs decreased mitochondrial membrane potential and increased intracellular ROS compared to non-toxigenic C. difficile-derived MVs. In addition, toxigenic C. difficile-derived MVs upregulated the expression of genes related to mitochondrial fission (FIS1 and DRP1), antioxidant status (GPX1), apoptosis (CASP3), glycolysis (HK2, PDK1, LDHA and PKM2) and ß-oxidation (CPT1A), as well as anti- and pro-inflammatory genes (IL-6 and IL-10). However, non-toxigenic C. difficile-derived MVs did not produce changes in the expression of these genes, except for CPT1A, which was also increased. In conclusion, the metabolic and mitochondrial changes produced by MVs obtained from toxigenic C. difficile present in CDI feces are common pathophysiological features observed in the NAFLD spectrum and DILI.

11.
BMC Microbiol ; 23(1): 104, 2023 04 15.
Article in English | MEDLINE | ID: mdl-37061685

ABSTRACT

BACKGROUND: Pathogenesis of canine fungal rhinitis is still not fully understood. Treatment remains challenging, after cure turbinate destruction may be associated with persistent clinical signs and recurrence of fungal rhinitis can occur. Alterations of the nasal microbiota have been demonstrated in dogs with chronic idiopathic rhinitis and nasal neoplasia, although whether they play a role in the pathogenesis or are a consequence of the disease is still unknown. The objectives of the present study were (1) to describe nasal microbiota alterations associated with fungal rhinitis in dogs, compared with chronic idiopathic rhinitis and controls, (2) to characterize the nasal microbiota modifications associated with successful treatment of fungal rhinitis. Forty dogs diagnosed with fungal rhinitis, 14 dogs with chronic idiopathic rhinitis and 29 healthy control dogs were included. Nine of the fungal rhinitis dogs were resampled after successful treatment with enilconazole infusion. RESULTS: Only disease status contributed significantly to the variability of the microbiota. The relative abundance of the genus Moraxella was decreased in the fungal rhinitis (5.4 ± 18%) and chronic idiopathic rhinitis (4.6 ± 8.7%) groups compared to controls (51.8 ± 39.7%). Fungal rhinitis and chronic idiopathic rhinitis groups also showed an increased richness and α-diversity at species level compared with controls. Increase in unique families were associated with fungal rhinitis (Staphyloccaceae, Porphyromonadaceae, Enterobacteriaceae and Neisseriaceae) and chronic idiopathic rhinitis (Pasteurellaceae and Lactobacillaceae). In dogs with fungal rhinitis at cure, only 1 dog recovered a high relative abundance of Moraxellaceae. CONCLUSIONS: Results confirm major alterations of the nasal microbiota in dogs affected with fungal rhinitis and chronic idiopathic rhinitis, consisting mainly in a decrease of Moraxella. Besides, a specific dysbiotic profile further differentiated fungal rhinitis from chronic idiopathic rhinitis. In dogs with fungal rhinitis, whether the NM returns to its pre-infection state or progresses toward chronic idiopathic rhinitis or fungal rhinitis recurrence warrants further investigation.


Subject(s)
Dog Diseases , Microbiota , Nose Neoplasms , Rhinitis , Dogs , Animals , Rhinitis/veterinary , Rhinitis/diagnosis , Rhinitis/microbiology , Dog Diseases/drug therapy , Nose , Nose Neoplasms/diagnosis , Nose Neoplasms/veterinary
12.
Pathogens ; 12(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36986304

ABSTRACT

The COVID-19 pandemic due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been plaguing the world since late 2019/early 2020 and has changed the way we function as a society, halting both economic and social activities worldwide. Classrooms, offices, restaurants, public transport, and other enclosed spaces that typically gather large groups of people indoors, and are considered focal points for the spread of the virus. For society to be able to go "back to normal", it is crucial to keep these places open and functioning. An understanding of the transmission modes occurring in these contexts is essential to set up effective infection control strategies. This understanding was made using a systematic review, according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement (PRISMA) 2020 guidelines. We analyze the different parameters influencing airborne transmission indoors, the mathematical models proposed to understand it, and discuss how we can act on these parameters. Methods to judge infection risks through the analysis of the indoor air quality are described. Various mitigation measures are listed, and their efficiency, feasibility, and acceptability are ranked by a panel of experts in the field. Thus, effective ventilation procedures controlled by CO2-monitoring, continued mask wearing, and a strategic control of room occupancy, among other measures, are put forth to enable a safe return to these essential places.

13.
Viruses ; 15(3)2023 03 10.
Article in English | MEDLINE | ID: mdl-36992428

ABSTRACT

New control methods are needed to counter antimicrobial resistances and the use of bacteriophages as an alternative treatment seems promising. To that end, the effect of the phage vB_KpnP_K1-ULIP33, whose host is the hypervirulent Klebsiella pneumoniae SA12 (ST23 and capsular type K1), was assessed on intestinal microbiota, using an in vitro model: the SHIME® system (Simulator of the Human Intestinal Microbial Ecosystem). After stabilization of the system, the phage was inoculated for 7 days and its persistence in the different colons was studied until its disappearance from the system. The concentration of short chain fatty acids in the colons showed good colonization of the bioreactors by the microbiota and no significant effect related to the phage treatment. Diversity (α and ß), the relative abundance of bacteria, and qPCR analysis targeting different genera of interest showed no significant variation following phage administration. Even if further in vitro studies are needed to assess the efficacy of this phage against its bacterial host within the human intestinal ecosystem, the phage ULIP33 exerted no significant change on the global colonic microbiota.


Subject(s)
Bacteriophages , Gastrointestinal Microbiome , Microbiota , Podoviridae , Humans , Bacteriophages/genetics , Klebsiella pneumoniae
14.
Vet Sci ; 10(3)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36977255

ABSTRACT

Otitis media can be a consequence of chronic otitis externa and could represent a perpetuating factor. While the microbiota of the EEC in healthy dogs and in the presence of otitis externa has been described, only sparse information is available concerning the normal microbiota of the middle ear. The objective was to compare the tympanic bulla (TB) with the external ear canal (EEC) microbiota in healthy dogs. Six healthy experimental Beagle dogs were selected based on the absence of otitis externa, negative cytology and bacterial culture from the TB. Samples from the EEC and TB were collected directly after death using a total ear canal ablation and lateral bulla osteotomy. The hypervariable segment V1-V3 of the 16S rDNA was amplified and sequenced with a MiSeq Illumina. The sequences were analyzed by the Mothur software using the SILVA database. No significant differences between the EEC and TB microbiota for the Chao1 richness index (p = 0.6544), the Simpson evenness index (p = 0.4328) and the reciprocal Simpson alpha diversity (p = 0.4313) were noted (Kruskal-Wallis test). A significant difference (p = 0.009) for the Chao1 richness index between the right and left EEC was observed. The microbiota profile was similar in the EEC and the TB of the Beagles.

15.
Int J Mol Sci ; 24(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36902401

ABSTRACT

The composition and impact of fecal-microbe-derived extracellular vesicles (EVs) present in different diseases has not been analyzed. We determined the metagenomic profiling of feces and fecal-microbe-derived EVs from healthy subjects and patients with different diseases (diarrhea, morbid obesity and Crohn's disease (CD)) and the effect of these fecal EVs on the cellular permeability of Caco-2 cells. The control group presented higher proportions of Pseudomonas and Rikenellaceae_RC9_gut_group and lower proportions of Phascolarctobacterium, Veillonella and Veillonellaceae_ge in EVs when compared with the feces from which these EVs were isolated. In contrast, there were significant differences in 20 genera between the feces and EV compositions in the disease groups. Bacteroidales and Pseudomonas were increased, and Faecalibacterium, Ruminococcus, Clostridium and Subdoligranum were decreased in EVs from control patients compared with the other three groups of patients. Tyzzerella, Verrucomicrobiaceae, Candidatus_Paracaedibacter and Akkermansia were increased in EVs from the CD group compared with the morbid obesity and diarrhea groups. Fecal EVs from the morbid obesity, CD and, mainly, diarrhea induced a significant increase in the permeability of Caco-2 cells. In conclusion, the metagenomic composition of fecal-microbe-derived EVs changes depending on the disease of the patients. The modification of the permeability of Caco-2 cells produced by fecal EVs depends on the disease of the patients.


Subject(s)
Crohn Disease , Extracellular Vesicles , Obesity, Morbid , Humans , Caco-2 Cells , Crohn Disease/microbiology , Feces/microbiology , Diarrhea
16.
Microorganisms ; 11(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36838196

ABSTRACT

Fecal microbiota transplantation (FMT) has been used empirically for decades in equine medicine to treat intestinal dysbiosis but evidence-based information is scarce. This in vitro study aimed at assessing the effect of a commonly used pre-FMT processing method on the bacterial composition and viability of the fecal filtrate. Three samples of fresh equine manure (T0) were processed identically: the initial manure was mixed with 1 L of lukewarm water and chopped using an immersion blender to obtain a mixture (T1), which was left uncovered during 30 min (T2) and percolated through a sieve to obtain a fecal filtrate (T3). Samples were taken throughout the procedure (Tn) and immediately stored at 4 °C until processing. The 16S rDNA amplicon profiling associated with propidium monoazide treatment was performed on each sample to select live bacteria. Analyses of α and ß diversity and main bacterial populations and quantitative (qPCR) analysis were performed and statistically compared (significance p < 0.05) between time points (T0-T3). No significant differences in ecological indices or mean estimated total living bacteria were found in the final fecal filtrate (T3) in regard to the original manure (T0); however, relative abundances of some minor genera (Fibrobacter, WCHB1-41_ge and Akkermansia) were significantly different in the final filtrate. In conclusion, the results support the viability of the major bacterial populations in equine feces when using the described pre-FMT protocol.

17.
Vet Sci ; 10(2)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36851398

ABSTRACT

This study aimed to describe the bacterial composition of the surgical site during elective caesarean sections (CSs) using the 16Sr DNA amplicon sequencing performed in parallel to bacterial culture. The study involved 13 Belgian blue cows of a previous dataset of 76 animals. Bacteriology was performed on swabs sampled from visceral and parietal peritoneum during the CS. Amplicon sequencing was performed in six samples chosen randomly among the swabs positive for bacteriology and seven among the culture-negative swabs. A total of 2542 bacterial operational taxonomic units belonging to 567 genera were identified. The most often identified genus and species were Mycoplasma (44%) and Mycoplasma wenyonii (36%), respectively. Results showed no difference in microbiota composition between the culture-positive and -negative samples. However, a difference was observed between the bacteriology and amplicon sequencing results. Indeed, seven out of nine cultured strains were not identified by amplicon sequencing in the samples in which they were cultured. In contrast to bacteriology, amplicon sequencing unveiled the presence of bacterial DNA in all elective CSs. The most identified DNA is most likely derived from the haematogenous spread of bacteria to the surgical site. Furthermore, the cultured bacteria were not the dominant species in the sample from which they were cultured.

18.
Microorganisms ; 12(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38257911

ABSTRACT

We describe and discuss the intestinal mycobiota of dairy cows reared in France following variations in dietary regimes and two seasons. Two groups of 21 animals were followed over a summer and winter period, and another group of 28 animals was followed only during the same summer season. The summer diet was based on grazing supplemented with 3-5 kg/d of maize, grass silage and hay, while the winter diet consisted of 30% maize silage, 25% grass silage, 15% hay and 30% concentrate. A total of 69 DNA samples were extracted from the feces of these cows. Amplification and sequencing of the ITS2 region were used to assess mycobiota diversity. Analyses of alpha and beta diversity were performed and compared statistically. The mycobiota changed significantly from summer to winter conditions with a decrease in its diversity, richness and evenness parameters, while beta diversity analysis showed different mycobiota profiles. Of note, the Geotrichum operational taxonomic unit (OTU) was prevalent in the winter group, with a mean relative abundance (RA) of 65% of the total mycobiota. This Geotrichum OTU was also found in the summer group, but to a lesser extent (5%). In conclusion, a summer grazing diet allowed a higher fecal fungal diversity. These data show, for the first time, that a change in diet associated with seasonality plays a central role in shaping hindgut fungal diversity.

19.
Vet Sci ; 9(12)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36548847

ABSTRACT

To improve the efficacy of preoperative antibiotics used in elective caesarean section (CS), we aimed to identify the bacteria contaminating the surgical site during this surgery. A study was conducted on 76 Belgian Blue cows. Bacteriology was performed on cotton swab sampled from the visceral and parietal peritoneum of each cow during the CS. Most of samples showed a negative culture (55/76; 72.37%), 19/76 (25%) were positive (p < 0.0001) and two samples were contaminated. In total, 32 isolates belonging to 18 species were identified. Most of them are aerobic (17/18; 94.44%) and half of them were gram-negative (G-). The most encountered bacteria were Acinetobacter sp. (6/32; 18.75%), Pseudomonas sp. (4/32; 12.5%), Aerococcus viridans (4/32; 12.5%), Psychrobacter sp. (3/32; 9.37%), and Escherichia coli (2/32; 6.25%). Among the identified isolates, 31/32 (96.87%) were aerobic and 1/32 (3.12%) was anaerobic (p = 0.0001). Furthermore, 20/32 (62.50%) strains were G− while 12/32 (37.5%) were gram-positive (G+) (p = 0.012). In fact, most of cultured strains were aerobic G− (20/32), 11/32 were aerobic G+ and 1/32 is anaerobic G+ (p < 0.0001). In conclusion, most of samples showed a negative bacteriology; however, aerobic G− strains were the most identified in positive swabs. Therefore, preoperative antibiotics should be aimed against these bacteria.

20.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36499011

ABSTRACT

Gut microbiota alterations are intimately linked to chronic constipation upon aging. We investigated the role of targeted changes in the gut microbiota composition in the relief of constipation symptoms after rhubarb extract (RE) supplementation in middle-aged volunteers. Subjects (95% women, average 58 years old) were randomized to three groups treated with RE at two different doses determined by its content of rhein (supplementation of 12.5 mg and 25 mg per day) vs. placebo (maltodextrin) for 30 days. We demonstrated that daily oral supplementation of RE for 30 days was safe even at the higher dose. Stool frequency and consistency, and perceived change in transit problem, transit speed and difficulty in evacuating, investigated by validated questionnaires, were improved in both groups of RE-treated volunteers compared to placebo. Higher abundance of Lachnospiraceae (mainly Roseburia and Agathobacter) only occurred after RE treatment when present at low levels at baseline, whereas an opposite shift in short-chain fatty acid (SCFA) levels was observed in both RE-treated groups (increase) and placebo (decrease). Fecal Lachnospiraceae and SCFA were positively correlated with stool consistency. This study demonstrates that RE supplementation promotes butyrate-producing bacteria and SCFA, an effect that could contribute to relieving chronic constipation in middle-aged persons.


Subject(s)
Gastrointestinal Microbiome , Rheum , Adult , Middle Aged , Humans , Female , Male , Constipation/microbiology , Fatty Acids, Volatile/pharmacology , Feces/microbiology , Clostridiales , Double-Blind Method
SELECTION OF CITATIONS
SEARCH DETAIL
...